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Phase-fixed double-group 3-U symbols. III. Real 3-U 
symbols and coupling coefficients for the dihedral double 
groups 
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DK-2100 Copenhagen 0, Denmark 

For the infinite dihedral double group D* and the finite dihedral double 
groups DE* through D6*; D*; D*0; and D*2, we present various choices of 
standard unitary irreducible matrix representations and discuss properties of 
corresponding 3-F symbols. The presentation follows a recent exposition of 
the general theory of 3-F symbols and coupling coefficients [1] and a com- 
panion description of general features of double groups and their irreps and 
3-F symbols [2]. 
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and coupling coefficients--standard irreducible matrix representations-- 
complex conjugation of matrix representations by inner and outer 
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I. Introduction 

Following a general paper on the theory of 3-F symbols [1] and another paper 
specifically dealing with properties of such quantities for double groups [2], we 
shall now set up basis functions for various choices of standard matrix irreps of 
the title groups and discuss the 3-F symbols generated by these basis functions 
([2], Sect. 4), with the reservation that explicit calculations of complete sets of 
3-F symbols only have been performed for the groups D* through D6*; D*; Dl*0; 
and D*2; and only selected examples from this material have been included in 
this paper. 

* Presen t  address :  Department of Pharmaceutical Chemistry AD, Royal Danish School of Pharmacy, 
Universitetsparken 2, DK-2100 Copenhagen 0, Denmark. 
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Apart from their immediate relevance for applications, the dihedral double groups 
deserve the attention we give them here for the following reasons: 

(i) They are simpler to handle in some respects than the tetrahedral, octahedral, 
and icosahedral groups to be treated in subsequent papers (they are multiplicity- 
free and have no irreps of dimension greater than two), but nevertheless they 
exhibit several of the complicating features we have discussed in the general 
papers (irreps of all three Frobenius-Schur kinds ([1], Sect. 5.2; [3]) occur; 
sometimes secondary irrep bases ([2], Sect. 4) are needed). For the purpose of 
illustrating the theory they are thus a suitable starting point. 

(ii) Some of  the dihedral groups turn up as subgroups of the tetrahedral, octahe- 
dral and icosahedral groups and are therefore members of some of the group-  
subgroup hierarchies to which we may adapt the matrix irreps of those larger 
groups. 

We start by discussing the infinite group D *  which is a "parent"  group for all 
the D,* (i.e. for n = 2, 3, 4, 5 , . . . ,  D* is a subgroup of D*)  ; cf. [4], or, for the 
point groups Dn and Do, [5]. We shall see that when we have discussed various 
choices of  matrix irreps of D*  and basis functions for them, we shall have done 
much of  the work needed to construct 3-F symbols for the finite groups D*. 

The present paper is, of  course, not the first one dealing with 3-F symbols for 
dihedral groups. Pertinent comments on the literature will be made partly as we 
proceed, partly in Sect. 7. 

2. The group D *  

The group D *  will here be defined as the infinite subgroup of R* generated by 
the elements 

C2,~/~ = ~E~/21(q~, 0,0) = e 0 ei~/2 , 0-< q~ <27r (2.1) 

together with the element 

cX*=~E1/21(~r, Tr, O)=(Oi 0). (2.2) 

Z *  The elements C2,,/~ are double-group elements corresponding to rotatioris about 
the Z-axis by an angle of q~, and C x* corresponds to the rotation by ~- about 
the X-axis. See the general discussion of double groups in ([2], Sect. 2.2) or in [6]. 

In Table 1 we give the rep-theoretical facts on D *  which are needed as a 
background when applying the procedure described in [2]. 

There are two or three natural ways to choose standard matrix irreps for D *  and 
basis functions generating them. These are given in Table 2 and we now comment 
on each of them. Those parts of the table which pertain to the groups D* will 
be dealt with in Sect. 3. 
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Table 1. The group D *  (Rep-theoretical facts and conventions) 
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= . Ex(h - ~ , 5 , ~ - , . . )  Irreps (F) Al A2 Ex(A 1 , 2 , 3 , . . )  _ i  3 s . 

Dimension 1 1 2 2 
Frobenius-Schur 
classification a I st kind 1 st kind 1 st kind 2 "d kind 
Vector/spin 
classification b vector vector vector spin 
F | F ~ Al A1 A1 ~ E2~ A2~ EzA 
F |  a - -  __ A 2 A1 
Primary j-value ~ 0 t A f h 
Supplementary j-values e n o n e  

a See ([1], Sect. 5.2). 
b See ([2], Sect. 2.1). 
~ Means "symmetric part of  F |  cf. ([1], Sect. A.1). 
d Means "antisymmetric part of F |  cf. ([1], Sect. A.I). 

Cf. [2], Sect. 4. All j-values are, in accordance with rule (1) given there, lowest possible, a fact 
which follows from the branching rules 

fA  1 fo r j  =0  

, ~ . ,  IA1 +El +E2+" �9 " +Ej for j  = 2, 4, 6, �9 �9 �9 
uJt  ix3 ) ~ ) A 2  +El +E2 +" �9 �9 +Ej  fo r j  = 1, 3, 5 , . . .  

~E~/2 +E3/2 +.  �9 �9 +Ej  fo r j  = 1/2, 3/2, 5 / 2 , . . . .  

f Note that the irreps E~ with )t odd were assigned the j-value ,~ + 1 in [7] (see also remarks in main 
text). 

(i) Adaption to the hierarchy D* D C*. This is the choice obtained when we just 
use the R*-basis functions Ijm) = lab) and Ih - h ) ,  in this order, to generate the 
irrep Ex(D*) for all h = 1/2, 1, 3/2,  2 , . . . .  The irrep matrices for the elements 

Z* C2~/~ are all diagonal; thus the matrix irreps are adapted to C*,  the infinite 
commutative subgroup of D *  consisting of  these elements. The 3-F symbols 
generated by these basis functions are all real, because the basis functions are, 
in particular, real linear combinations of  the Ijm) ([2], Sect. 4). [Indeed, all 3-F 
symbols here are just suitably normalized 3-j symbols.] Actually, one may easily 
check that ([2], Eq. (4.4.1)) with Ro = C2 r*= Nw21(0, ~r, 0) is satisfied by this 
choice, so that the particularly nice formalism of ([1], Sect. 5.5) applies. It is easy 
to make a listing of  the types of  3-F symbols occurring for this choice of  standards, 
and we have done this in Table 3. 

The 3-F symbols obey the "selection rule" 

F1 F2 F3) ~ 0 ~ yl +,y2 +y3 = 0 (2.3) 
"Yl Y2 ")/3 

due to the Coo-adaptation ([2], Section 3.5). Furthermore, the relation 

( F t  F2 F 3 ) = ( - 1 ) ~ ( r l ) + J ( r g + J ( r 3 ) ( F 1  F2 F 3 )  (2 .4)  

--'Yl - -72  - -73 \ 'Yl  72 73 
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Table 3 

Damhus et al. 

Types of 3-F symbols for D*  D C*"  

( A  1 A1 Aa)e 'd=l  ; (A02 A 1 A02)e ; 

0 - 0 - ; 

(EAz E~ Ex+~, ,~e (E~  E o. Ex+,~') ~'b 
~z -(A+~)/ '  -~ a+~/  ; 

(Ex E~, E;~_~y (_E A E,, EA_~  f'b 
-,~ ~ - A / '  ~ A-,~] ,z>tz 

a The table applies to choice (i) of Table 2. Note the selection rule (2.3). Of course this table tells, 
independently of choice of standards for the irreps, which irrep triples can have non-zero triple 
coefficients. 
b Relations exist between the 3-F symbols within each of these three pairs: see Eq. (2.4). 
= Even if ( -1)  2x+z" = 1, odd otherwise. 
d See ([2], Sect. 4.4). 
e Even. 
e/o Even for A an integer, odd otherwise. 
o/e Odd for A an integer, even otherwise. 
f Even if ( -1)  2a = 1, odd otherwise. 

is valid, owing to (2.3) and the form 
y* T(C2 )~,= (-1)J(r)-v'8(7, y') (2.5) 

of the irrep matrices for the element C~* (cf. again [2], Sect. 3.5). In (2.4) and 
(2.5), the symbol j(Fi) denotes the primary j-value for Fi as defined in Table 1. 

(ii) Adaption to the hierarchy D* D C*. By C* we shall here mean the subgroup 
of D*  generated by the element C x*. Thus, for this choice of standard matrix 
irreps F the matrix F(C x*) is always diagonal. Note that the irrep component 
designations are now chosen on the basis of these generator matrices. 

The present matrix irreps have the "symmetric generator irrep matrices"- property 
and thus allow real 3-F symbols ([2], Sect. 3.2). Indeed, the standard basis 
functions given in Table 2 for this hierarchy are all real linear combinations of 
the Ijm) functions and thus generate real 3-F symbols ([2], Sect. 4.4). Eq. (4.4.1) 
of [2] still holds with Ro = C~* and therefore also the formalism of ([1], Sect. 5.5). 

Observe that the 3-F symbols for this choice obey the "selection rule" 

(F1 F2 F 3 ) ~ O ~ y , + y 2 + Y 3 = O o r 2  (2.6) 
71 72 Y3 

because of the C*-adaption. 
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(iii) Adaption to the hierarchy D* ~ C*, variant. For the vector irreps of D*, 
these matrix irreps are identical, except for a renaming of group elements, to the 
ones used for Do~ in [7]. It may easily be checked that they have the property 
that if a triple F~F2F3 has non-zero fix-vectors, then the matrices 

Z* Y* FI|174 and F I @ F 2 @ F 3 ( C  2 ) 

are all real (use the fact, [2], Sect. 2.1, that such triples always contain an even 
number of spin irreps). From this we may conclude that these matrix forms of 
the irreps allow real 3-F symbols to be chosen ([2], Sect. 3.2). Indeed, it may be 
seen that changing the basis functions of (ii) by the prescription 

[F~/)(iii) = 0/2VlF'y}(il) (2.7) 

where 0/= exp (i7r/4), gives basis functions generating the (iii)-matrix irreps and 
simultaneously generating real 3-F symbols for all triples. In fact, the 3-F symbols 
generated, when following our procedure, from the basis functions defined by 
(2.7) satisfy the relation 

: O/(271+2,,/2+273 ) F[ F2 F3 
"~1 ")/2 ")/3 (iii) \ T I  'Y2 '~3 (ii) 

= i(3q+~/2+v3)( F.  F2 F3)  
\ ")/1 ~2 ")/3 (ii)' (2.8) 

where the phase factor in the latter expression is seen from (2.6) to be always 1 
or -1.  Eq. (2.6) is of course, then, also satisfied by the variant 3-F symbols. In 
view of (2.8) it is never necessary to tabulate or even calculate the variant 3-F 
symbols separately. 

One may now, using any desired choice of basis functions for D* among the 
above ones, generate any desired portion of the infinitely many 3-F symbols for 
D*. We shall not tabulate such 3-F symbols separately, but some of them appear 
below as 3-F symbols for some of the subgroups D* of D*. 

[Kibler and Grenet [8] have given explicit formulas, in terms of 3-j symbols for 
SU(2), for all general types o f f  coefficients (a choice of coefficients closely related 
to coupling coefficients) corresponding to a particular choice of (SU(2)D 
D*)-adapted basis functions. Their standard irreducible matrix representations 
of D*  are a mixture of our choices (i) and (ii) with some additional sign changes.] 

3. The groups D*, n =2, 3, 4, 5 , . . .  

For each integer n -> 2 we shall define here D* as the subgroup of D* (and thus 
of R3*) generated by C2 x* and C z*. 

Table 4 gives the rep-theoretical information on the groups D~* needed in the 
following. What we shall have to discuss here is the assignment of j-values and 
basis functions to the irreps of D~*, cf. ([2], Sect. 4.4). 
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All primary j-values are simply as low as possible, in accordance with rule (1) in 
([2], Sect. 4). The interesting thing to note is the assignment of secondary j-values 
to all irreps E~ (D*) of the first kind. However, a general discussion of the necessity 
of two sets of basis functions for these irreps and the reason for choosing the 
particular j-values given in Table 4 will be deferred to Sect. 4. This is done for 
the sake of clarity, and a reader who wishes to do so may read Sect. 4 before 
proceeding in the present section. 

Basis functions for D* with the j-values thus selected are chosen according to 
three different schemes, corresponding to the three choices of standard matrix 
irreps and basis functions for D*  in Sect. 2. Prescriptions for this are given in 
each part of Table 2; the following general features may be noted: 

The standard form of the irreps I:~(D*), 1/2_< h < n/2, is in each case simply 
the matrix irrep obtained by restricting I:a(D*) to D* and the basis functions 
may thus be taken over directly as those for ~a(D*). 

The one-dimensional irreps Bl, B2 and R1, R2 are given in Table 2; in D*, 
A1, A2, B~, and B2 are called A, B~, B3, and B2, respectively. Basis functions are 
always made out of the E,/2(D*) set, with free phases fixed according to the 
principles given in ([2], Sect. 4.4). The easiest cases to consider here are (ii) and 
(iii), where E,/2(D*) has a matrix form which directly blocks out as B~| 
resp. R1Q R2, upon restriction to D*. 

A problem only arises for the (first-kind) irreps E~(D*) with A integer which, as 
mentioned, have to be assigned secondary bases. Given n and A and a particular 
choice among (i)-(iii), the irrep E,_x(D*) will yield, on restriction to D*, an 
irrep equivalent to Ex(D*), but generally with a different matrix form than the 
one fixed as the standard above. Interchanging the D* basis functions for E,_~ 
and/or changing the sign of one of the functions gives, however, in each case 
the correct matrix form. 

Summing up, case (i) involves matrix irreps of D* adapted to C* (the subgroup 
Z* generated by C ,  ), while those of cases (ii) and (iii) are (D* z C*)-adapted. 

Note that the irrep component designations are chosen accordingly. The mutually 
complex conjugate third-kind irreps R~(D*) and R2(D*), n odd, have the non- 
numerical component designation " r " ;  the reason for using such a symbol was 
given in ([2], Sect. 3.4). For the purpose of checking with the selection rules (3.1) 
and (3.2) below, the component translations R~r = n/2, R2r = - n / 2  in case (i) 
and Rlr = 1/2, R2r = - 1 / 2  in cases (ii) and (iii) may be used. The basis functions 
prescribed in Table 2 for the groups D* generate real 3-F symbols. 

It may furthermore be checked that for D*, n even, Eq. (4.4.1) of [2] is satisfied 
so that the formalism of ([1], Sect. 5.5) applies. 

The 3-F symbols of choice (i) satisfy, because of the adaption to C*, the "selection 
rule" 

( El F2 r3) # 0 :::~ ,yl + ,y2 + ,y3 ~ 0 (rood n ) (3.1) 
T! T2 ")/3 
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([2], Sect. 3.5). Those of choices (ii) and (iii) satisfy the rule 

(F1 F2 F a ) # 0 ~ y , + y z + y 3 _ _ 0 ( m o d 2 ) .  (3.2) 
TI T2 ]/3 

Note. Consider the groups D,* with n odd. For all of the choices (i)-(iii), the 
matrix representing C2 x* in the irreps Ea is imaginary when A is equal to half 
an odd integer. This is of course unavoidable when one insists that it be diagonal, 
since its eigenvalues are i and -i .  However, in the C,*-adaptation situation, the 
irreps Ea may for all 3. be chosen in a matrix form with C2 x* represented by the 
matrix 

(01 ( -  10)2x ) (3.3) 

and C z* by the same diagonal matrix as in Table 2(i). On the other hand it is 
easily seen that in such a situation not all 3-F symbols can be real. (The idea is 
to demonstrate that certain standard matrix irrep triples 1~'2~3 will have a purely 

X* X* X* imaginary matrix for FI(C2 )| ) (~ [~3(C2  ) and to realize that an 
imaginary matrix cannot have a real fix-vector). If  one is, nevertheless, interested 
in this variant form of the irreps, one need not tabulate separate basis functions 
or 3-F symbols. The relation 

Ir]/)variant ~-- Or (3.4) 

where a is exp (i~r/4), provides basis functions generating them, and the generated 
3-F symbols differ from the ones known in case (i) just by the phase factor 
i -(~+~+~?. This phase factor is always one of the numbers 1, -1 ,  i, and - i  so 
that the variant 3-F symbols are either real or purely imaginary. (The whole 
discussion in this note may be compared with the one surrounding Eqs. (2.7) and 
(2.8) above.) 

4. Secondary bases for the irreps Ex of D,*, n -- 3, 4, 5 , . . .  

Suppose n -> 3 is given and E~ is one of the first-kind two-dimensional (and thus 
vector-type ([2], Sect. 2.1)) irreps of D*. Then A is an integer with 0<A < n/2, 
and therefore ( n -  A)/2 is either an integer or half an odd integer and satisfies 
n/4 < (n - A ) / 2  < n/2. There is thus a two-dimensional irrep E(n-x)/2 of D*, and 
consideration of Table 4 shows that the tensor product E(n-A)/2| E(n-A)/2 contains 
En-2(,-A)/2 = EA and thus (see, for example, the reasoning in [1], Sect. A.1) that 
E(n-x~/2E(,-a)/2Ex has non-zero fix-vectors. However, using the primary bases for 
E(n-a)/2 and Ea gives only zero triple coefficients for E(n_x)/2E(n_a)/2Ea. This fact 
is easily appreciated if one recalls that these bases are also bases for the D*-irreps 
with the same designations and that (Table 3) in D*, triple coefficients for 
E~,_A)/2E(,-a~/2Ea are necessarily zero (because A # 2(n - A)/2 under our present 
assumptions). The procedure of ([2], Sect. 4.4) then tells us to assign a secondary 
basis to one of the irreps in the triple E(,,_a)/2E(n_a)/zEa. Now, if A = ( n - A ) / 2 ,  
i.e. if A = n/3, then all three irreps are identical, and we conclude that Ea must 
be assigned a secondary basis. If ( n -  A)/2 ~ A, rule (9) in ([2], Sect. 4.4) concern- 
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ing triples containing two and only two identical irreps also says that Ex is the 
one to be assigned a secondary basis. Thus, in any case EA has to be assigned a 
secondary basis, and since A and n >-3 were chosen arbitrarily, we have seen 
that we shall always have to assign Ex ( D*,) a secondary as well as a primary basis. 
The above reference to D *  suggests the secondary j-value j = n - A for E~, and 
since this is also the next-to-lowest j-value assignable to E~ (D*),  it is in accord- 
ance with the prescriptions of [2] to choose a secondary EA(D*)-basis with 
j = n -A.  So this is what we have done, as already described above. It turns out 
that with our assignments of  basis functions we can generate all 3-F symbols for 
the groups D2*, D*, D*, D*, D*, D*, D*0, and D*2, which we believe to be at 
present the only D*-groups of direct interest in chemistry, and which are the 
only ones for which we have carried through the actual calculation of 3-F symbols. 
(The reason for the inclusion of D*, D*o and D*2 is that, by the definitions in 
([2], Sect. 2.2), these groups are the double groups of Dad, Dsh, and D6a, 
respectively). 

The question now arising of when to use primary and when to use secondary 
bases for the E~(D*) requires some commenting and we shall supply such a 
discussion by going through some selected examples. For those D*-groups which 
we have investigated, secondary bases are only needed in connection with irrep 
triples of the form EalExzEx3. We shall distinguish the following situations: 

1 ~ All  three A's different, A1 ~ A2r A3 ~ A~: For some of these cases, no secondary 
bases are needed. An example of this is E~E2E3 in D*. Consider however, e.g. 
E3EaE5 in D*2. Since none of the numbers 3, 4, and 5 is the sum or difference 
of the remaining two, consideration of D*-i r rep triples (Table 3) shows that 
using the primary bases for all three irreps just gives zero triple coefficients. 
However, if any one of the three is assigned its secondary basis and the remaining 
two their primary bases, non-zero triple coefficients are generated. (Cf. the fact that 

E9(D~) -> E3(D~*2) 

Es(D*) -> E4(D l'e) 

E7(D*~) -> Es(D ~'2) 

(4.1) 

and that each of the D*-triples E9E4Es, E3E8E 5 and E3E4E 7 has non-zero fix- 
vectors.) Rule (10) in ([2], Sect. 4.4) then tells us, of the three possibilities, to use 
for E5 its secondary basis (since 3 +4 +7 < 3 +8 +5 < 9 +4 +5). Evidently the rule 
is always decisive when three different A's are involved. 

2 ~ Two equal A's  and the third one different, say A~ = A3 ~ Ae: Again, sometimes 
the primary bases are sufficient. An example is EIE2E1 in D*. When A1 +A3 ~ A2, 
however, a secondary basis is needed and by the discussion above it is Ex~ which 
is to be assigned its secondary basis. For example, E3/eEIE3/2 in D4* is associated 
with the j-triple 3/2 3 3/2 and EaE2E 4 in D*o is associated with the j-triple 484. 

3 ~ Al l  three A's equal, A~ = A2 = A3 = A: This situation by Table 4 only occurs for 
A = n/3 (in groups D* where n is a multiple of 3). A triple of this type has, as 
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we know, always multiplicity 1 and is thus simple phase ([1], Sect. 3.2); since Ea 
occurs in EA | Ex (Table 4), its fix-vectors are necessarily fully symmetric ([1], 
Sect. 3.2 and Sect. A.1) so that 3-F symbols for ExExE~ are even. Since the 
D*-i r rep  triple EAEAE~ has only zero triple coefficients, we have to assign the 
secondary basis with j = n - A = 2A to Ex in one of the three positions. The only 
problem is whether the position of the secondary basis is of consequence for the 
resulting 3-F symbols for EA EAEa. This turns out not to be the case, that is, the 
transformed 3-j symbols involved satisfy the relations: 

Exyl EAy2 EAT3 E,xyl E,~T2 EAT3 E,~yl ExT2 ExY3 

Let us prove just the first equality: since 2A + A + A = 4A which is an even number, 
the 3-j symbols are even ([1], Sect. 6) so that 

EaT1 EaT2 Exy3 E~y2 EA')/I EA'y3 

and since any Ea (D*)E~ (D*)Ex (D*) fix-vector as stated above is symmetric, we 
further have 

( A 2A A ) = (  A 2A A ) ,  (4.4 

EaT2 ExYl Exy3 Exyl Exy2 Ea'y3 

as desired. Compare with the discussion of the triple T I T  in [9]. 

Notes. (1) The prescriptions given above for primary and secondary basis func- 
tions for irreps of D* are of course applicable for all n; however, for a group 
D* not among the ones we have checked, we - in principle - do not know 
whether non-zero triple coefficients may be generated for all triples by using these 
basis functions. All we can say is that no " D *  - selection rule" tells anything 
about the possible vanishing of the generated triple coefficients. Possibly a general 
investigation of this question is not complicated, but we have not at the moment 
pursued the subject any further. 

(2) It should be noted that the assignment of basis functions to the irreps Ex 
with A integer in the present paper differs in several respects from that made in 
[7] in connection with the groups D,:  In the first place, our present procedure 
tells us to always assign j = A as the primary j-value, whereas j = A + 1 was used 
for A odd in [7]. Secondly, we here use different j-values for primary and secondary 
bases, whereas in [7], as an example, E1 of  D3 was assigned a primary as well 
as a secondary basis with j = 2. Thus, even in the cases where we here choose 
the same standard matrix irreps for a given D* as we did in [7] (choice (iii), see 
Sect. 2), phase differences are to be expected between the present 3-F symbols 
and those of  [7]. 

(3) q;he only previous attempt at a general treatment of 3-F symbols for dihedral 
double groups using basis functions is [10]. However, no explicit discussion is 
given of the necessity of secondary sets of  basis functions and of the use of such 
sets. Also, it is easy to show that with the standard matrix irreps used by those 
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authors, some 3-F symbols for D* with n odd must come out to be non-real. 
(Cf. note in Sect. 3 above.) 

5. Examples :  3-F symbol s  for D3* D C3" and for D* D C2" 

The tables of 3-F symbols for the D* groups which we have generated on the 
basis of the above discussion are too numerous and voluminous to be all included 
in the present paper. However, a couple of examples will convey most of the 
general features. We have chosen to display in Table 5 the 3-F symbols for 
D* D C* (choice (i) above) and D* D C* (choice (ii)); as far as we know, this is 
the first presentation of all-real sets of 3-F symbols for D*. 

We note the following features which illustrate general points made in [1] and 
[2] or above: 

(a) We see that for D* D C*, there are generally more allowed component triples 
(see the irrep triples ElAtE1 and EI/2E~EI/2) than for D* ~ C*, cf. the selection 
rule (3.2) which is weaker than (3.1). 

Table 5 

3-F symbols for D* generated by the basis functions of Table 2 

(i) 03* D C* 

E1/2 E1 EI/2 3-F 

1/2 -1 1/2 - 1 ~  
-1/2 1 -1/2 - ~1/2 

( At AI0 Al) =1; (A2 A10 A02)=-l; (Rrl A10 R2) =1; 

even even odd; A = -1 

0 \ 1/2 0 -l/2J 
even odd 

(El A2 _E,1)=_~/I~; (E~/z A2 E,/:~=~/I~; 
0 \ 1/2 0 -1/2] 
odd even 

even even 

El E1/2 Ri 3-F 

1 1/2 r + 1 , ~  
-1 -1/2 r -41 /2  

odd; A=-1 

E1 E1 Ej 3-F 

1 1 1 -,./1/2 
-1 -1 -1 ,/1/2 

even ; A = - 1 

even 

E 1 El/2 R 2 3-F 

1 1/2 r - 1 , ~  
-1 -1/2 r-- , /1/2 

odd; A = +1 
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3-F symbols for D3* generated by the basis functions of Table 2 

(ii) D* = C2" 

even even odd; A = - 1 

0 0 k 1/2 0 -1 /2 /  

even odd 

(~I a12 El) = ~/1-~; (R, a12 Rl)=l ; (R 2 AI2 R2) =_1; 

odd even even 

_(El/2 m 2 EI/2~=(E1/2 m 2 E;~ ) 2 - ~/1/2; - -  
k l /2  1 1/2/  \ - 1 / 2  1 

even 
El/2 E1 EU2 3-F El El/2 R l 3-F 

1/2 0 -1/2 1/2 0 - l / 2  r - 1 ~  
l/2 1 1/2 -1/2  1 1/2 r -41/2 

-1/2  I -1/2 -1/2 

El El/2 R2 3-F 

0 1/2 r - l x ~  
1 - 1 / 2  r -41/2 

even odd;A =-1  odd;A= +1 

El E1 El I3"F 
0 0 0 I 1/2 
0 1 1 1/2 

even;A= -1 

(b) We note  that  (A~A~A~/000) = +1 in bo th  cases and  recal l  tha t  consequences  
o f  this  r e l a t ion  were  m e n t i o n e d  in ([2], Sect. 4.4). 

(c) We have  given the one  by  one  D e r o m e - S h a r p  A mat r ix  ([1], Sect. 5.4) for  
some o f  the  t r iples  as a n u m b e r  A. We note  tha t  for  R~A~R2 we have an i l lus t ra t ion  
o f  (4.4.7) o f  [2] and  for  E1E~/2R~ an i l lus t ra t ion  o f  (A.5.7) o f  [1]; in these  cases,  
a negat ive  A must  occur  within our  set o f  convent ions .  This is t rue even for  
E~E,E~, a t r ip le  o f  f i rs t -kind irreps.  I f  we keep  the p resen t  mat r ix  i r reps ,  the on ly  
way  to ob t a in  A = +1 for  E1E1E~ w o u l d  be  to mul t ip ly  the bas is  funct ions  by  a 
non- rea l  comp lex  phase ,  The A matr ices  m a y  in all cases be  ca lcu la t ed  f rom the 
3-F symbols  given in the table.  F o r  example ,  for  D *  = C*  we have,  giving all  
de ta i l s ,  

1/2 
(5.1) 
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from which it is seen that A -  -1 for E1E1/2R1. In the calculation (5.1) we used, 
twice, the conjugation formulae developed in ([1], Sect. 5.3). 

(d) To illustrate further our formalism, we demonstrate the construction of 
coupling coefficients according to ([1], Sect. 5.3): for D* D C* we get 

(E, 1E,/zl/ZIRer) 

= ~r (El E1/2~.2)~.(E,A,~I)sign (~.2A, R 2 ) ~ / ~ ( E 1  , F.,/2 l/2 Rr2) 
= .,,-(EIE,,#.0.,,-(E1A1E1)sign (R,A,e.2) ( 11 1/2 R2) 

= (_I)(+I)(+I)(E1,  El/2 

_(ell F-~1/2 
here we used ([1], Eqs. (5.3.15) and (5.3.14)); ([1], Eq. (5.3.13)); Table 5 of this 
paper in connection with ([1], Eq. (5.3.5)); and Table 5 once more. 

[See again note (3) in Sect. 4. In addition, [11] gives a set of what is called symmetry 
coupling coefficients for D*, generated by specified basis functions. Some of the 
coefficients are non-real. It is claimed that 3-F symbols cannot be constructed. 
A secondary basis is provided for E~(D*), but no closer discussion of the use of 
it is given.] 

6. Further material available 

If there is a subgroup D* of D* with m < n, then one may choose standard 
matrix irreps of D* which upon restriction to D* yield the irreps of that group 
in the standard D* = C* or D* ~ C* form discussed above. These matrix irreps 
of D* will generally not be identical to any of those met with in cases (i)-(iii), 
but will be closely related to them. We have prepared basis functions and 3-F 
symbols for the following hierarchies of this kind: 

D* ~ D* = C* (i), D* ~ D* ~ C* (ii) 

D6* ~ Dr  ~ C~ 

D6*~ Dr  ~ C~ (6.1) 

D~ D D~ D C~ (i), D~ ~ D~ D C2" (ii). 

All of these symmetry hierarchies may rather obviously be of practical relevance, 
but the two D6* ~ D3* hierarchies are of interest from a fundamental point of 
view as well. It has recently been proved [12] that the existence of real coupling 
coefficients for a certain set of matrix irreps of a given group - or, equivalently 
(use arguments given in Appendix A of [13]) real 3-F symbols - implies that there 
is a (unique) automorphism of the group (homomorphic one-to-one mapping of 
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the  g r o u p  on to  itself)  car ry ing  all the mat r ix  i r reps  into the i r  c omp le x  conjugates .  
Fo r  all  the  basis  func t ion  sets r ep re sen ted  by  (6.1), the a u t o m o r p h i s m  jus t  
m e n t i o n e d  is the inner a u t o m o r p h i s m  R ~ C Y * R ( c Y * )  -~. ( In  fact,  in this  mater ia l ,  
Eq. (4.4.1) o f  [2] is a lways  sat isf ied with Ro = C2 r* and  the fo rma l i sm o f  ([1], Sect. 
5.5) app l ies ) .  F o r  D3* which  possess  i r reps  o f  the th i rd  k ind ,  an i r r ep -con juga t ing  
a u t o m o r p h i s m  mus t  be ou te r  (and  so the  above  one is). The  s i tua t ion  we are  
desc r ib ing  with D3* c D *  is ana logous  to the  one encoun te r ed  with the t e t r ahedra l  
doub le  g roup  [9] and  the i m b e d d i n g  o f  it in the oc t ahedra l  doub le  g roup  in [14]. 

7. Further remarks on the literature 

I n f o r m a t i o n  equ iva len t  to sets o f  3 - F  symbols  for  var ious  d ihed ra l  d o u b l e - g r o u p  
h ie ra rch ies  m a y  be ex t rac ted  f rom the tables  in [15]. The m e t h o d  used  in [15] is 
r ad ica l ly  different  f rom the one desc r ibed  here  (cf. our  remarks  in [2]) and  in 
pa r t i cu l a r  does  no t  involve  basis  funct ions .  I n f o r m a t i o n  on mat r ix  i rreps and  
basis  func t ions  is difficult to extract  f rom [15] and  [16]. The p a p e r  [17] deals  with 

D4d ~ D4 D C4 (or  ra ther  thei r  doub le  g roups ;  cf. [2], Sect. 2.2) by  But ler ' s  me thod .  
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