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Phase-fixed double-group 3-I' symbols. III. Real 3-I"
symbols and coupling coefficients for the dihedral double
groups

Ture Damhus*, Sven E. Harnung, and Claus E. Schaffer

Chemistry Department I, H. C. @rsted Institute, University of Copenhagen, Universitetsparken 3,
DK-2100 Copenhagen &, Denmark

For the infinite dihedral double group D% and the finite dihedral double
groups D¥ through D¥; D¥; D¥,; and D%, we present various choices of
standard unitary irreducible matrix representations and discuss properties of
corresponding 3-I" symbols. The presentation follows a recent exposition of
the general theory of 3-I' symbols and coupling coefficients [1] and a com-
panion description of general features of double groups and their irreps and
3-T" symbols [2].
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1. Introduction

Following a general paper on the theory of 3-I" symbols [1] and another paper
specifically dealing with properties of such quantities for double groups [2], we
shall now set up basis functions for various choices of standard matrix irreps of
the title groups and discuss the 3-I' symbols generated by these basis functions
([2], Sect. 4), with the reservation that explicit calculations of complete sets of
3-I" symbols only have been performed for the groups D% through D¥; D¥; D¥;;
and D%,; and only selected examples from this material have been included in
this paper.
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Apart from their immediate relevance for applications, the dihedral double groups
deserve the attention we give them here for the following reasons:

(i) They are simpler to handle in some respects than the tetrahedral, octahedral,
and icosahedral groups to be treated in subsequent papers (they are multiplicity-
free and have no irreps of dimension greater than two), but nevertheless they
exhibit several of the complicating features we have discussed in the general
papers (irreps of all three Frobenius—Schur kinds ([1], Sect. 5.2; [3]) occur;
sometimes secondary irrep bases ([2], Sect. 4) are needed). For the purpose of
illustrating the theory they are thus a suitable starting point.

(ii) Some of the dihedral groups turn up as subgroups of the tetrahedral, octahe-
dral and icosahedral groups and are therefore members of some of the group-
subgroup hierarchies to which we may adapt the matrix irreps of those larger
groups.

We start by discussing the infinite group D% which is a “parent” group for all
the D¥ (i.e. for n=2,3,4,5,..., D¥ is a subgroup of D%); cf. [4], or, for the
point groups D, and D, [5]. We shall see that when we have discussed various
choices of matrix irreps of D% and basis functions for them, we shall have done
much of the work needed to construct 3-I' symbols for the finite groups D7,

The present paper is, of course, not the first one dealing with 3-I' symbols for
dihedral groups. Pertinent comments on the literature will be made partly as we
proceed, partly in Sect. 7.

2. The group D%

The group D¥ will here be defined as the infinite subgroup of R} generated by
the elements

- L e ®? 0
C2#/¢=9[/ ](¢’ 070)=< 0 ei<p/2>’ OS¢<27T (2'1)
together with the element
X [1/2] 0 i
Cs =9 (m m0)= i o) (2.2)

The elements CZ, ;- are double-group elements corresponding to rotationis about
the Z-axis by an angle of ¢, and C5 ’ corresponds to the rotation by 7 about
the X-axis. See the general discussion of double groups in ([2], Sect. 2.2) or in [6].

In Table 1 we give the rep-theoretical facts on DZ which are needed as a
background when applying the procedure described in [2].

There are two or three natural ways to choose standard matrix irreps for D% and
basis functions generating them. These are given in Table 2 and we now comment
on each of them. Those parts of the table which pertain to the groups D} will
be dealt with in Sect. 3.
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Table 1. The group D% (Rep-theoretical facts and conventions)

Irreps (T) A, A, E,(A=1,2,3,..) E,(x=433..)
Dimension 1 1 2 2
Frobenius—-Schur

classification® 1** kind 1** kind 1** kind 274 kind
Vector/spin

classification® vector vector vector spin

re,re A A, A @E,, A ®E;),

re,re — — A, A,

Primary j-value® 0 i Af A

Supplementary j-values® none

#See ([1], Sect. 5.2).

b See ([2], Sect. 2.1).

® Means “symmetric part of T®I™, cf. ([1], Sect. A.1).

4 Means “‘antisymmetric part of FQT™, cf. ([1], Sect. A.1).

°Cf. [2], Sect. 4. All j-values are, in accordance with rule (1) given there, lowest possible, a fact
which follows from the branching rules

A forj=0

A +E,+E,+ - -+E;forj=2,4,6,...
A;+E +E,+ - +E;forj=1,3,5,...
Ejy+Es/n+- - +E;forj=1/2,3/2,5/2,....

Dj(R;k)_’

" Note that the irreps E, with A odd were assigned the j-value A +1 in [7] (see also remarks in main
text).

(i) Adaption to the hierarchy D% > C%. This is the choice obtained when we just
use the R¥-basis functions |jm)=|AA) and |A —A), in this order, to generate the
irrep E,(D¥%) for all A=1/2,1,3/2,2,.... The irrep matrices for the elements
CZZ:N, are all diagonal; thus the matrix irreps are adapted to C¥%, the infinite
commutative subgroup of D% consisting of these elements. The 3-I' symbols
generated by these basis functions are all real, because the basis functions are,
in particular, real linear combinations of the |jm) ([2], Sect. 4). [Indeed, all 3-T
symbols here are just suitably normalized 3-j symbols.] Actually, one may easily
check that ([2], Eq. (4.4.1)) with Ro= CY =320, =, 0) is satisfied by this
choice, so that the particularly nice formalism of ([1], Sect. 5.5) applies. It is easy
to make a listing of the types of 3-I" symbols occurring for this choice of standards,
and we have done this in Table 3.

The 3-I' symbols obey the “selection rule”

<F1 r, T,

)750:>71+')‘2+73=0 (2.3)
Yi Y2 V3

due to the Cy-adaptation ([2], Section 3.5). Furthermore, the relation

(F‘ L2 F3)=(_1)j<r1>+j(r2>+j<r3>(r1 I F3) (2.4)
Vi TY2 TV Yo Y2 Vs
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Table 3

Types of 3-I" symbols for DX> C%?
<A1 A, A1>e’°‘_1. (Az A A\
0 0 o ’ 0o o o/’
(EA A, E)/ (E A, E\\°
A0 —a) A0 —r) 7
(EA E,, E) (E E;  E\™°
Ao=2a A/’ -A 22 —=A)
(EA E, E,., ) (EA E, EH,L)“"’_
Aop ()’ A - Atup)
(E,\ E, EML)f (EA E, E,\_F>f’b)‘>
A —p o ou-ir)’ A p A-p) ”
2 The table applies to choice (i) of Table 2. Note the selection rule (2.3). Of course this table tells,

independently of choice of standards for the irreps, which irrep triples can have non-zero triple
coeflicients.

® Relations exist between the 3-I" symbols within each of these three pairs: see Eq. (2.4).

©Even if (—1)***2* =1, odd otherwise.

9 See ([2], Sect. 4.4).

¢ Even.

/° Even for A an integer, odd otherwise.

°/¢0dd for A an integer, even otherwise.

"Even if (—1)** =1, odd otherwise.

is valid, owing to (2.3) and the form
T(CY )y =(=1YT7"8(7, v (2.5)

of the irrep matrices for the element C;~ (cf. again [2], Sect. 3.5). In (2.4) and
(2.5), the symbol j(T';) denotes the primary j-value for I'; as defined in Table 1.

(ii) Adaption to the hierarchy D¥ > C¥. By C% we shall here mean the subgroup
of D¥ generated by the element C X*. Thus, for this choice of standard matrix
irreps T the matrix [(CY") is always diagonal. Note that the irrep component
designations are now chosen on the basis of these generator matrices.

The present matrix irreps have the “symmetric generator irrep matrices” — property
and thus allow real 3-I" symbols ([2], Sect. 3.2). Indeed, the standard basis
functions given in Table 2 for this hierarchy are all real linear combinations of
the |jm) functions and thus generate real 3-I" symbols ([2], Sect. 4.4). Eq. (4.4.1)
of [2] still holds with Ro= €5 and therefore also the formalism of ([1], Sect. 5.5).

Observe that the 3-I" symbols for this choice obey the “‘selection rule”

(r1 r, T,

>¢0=>y1+y2+y3:00r2 (2.6)
Y Y2 V3

because of the C¥-adaption.
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(iii) Adaption to the hierarchy D% > C%, variant. For the vector irreps of D¥,
these matrix irreps are identical, except for a renaming of group elements, to the
ones used for D, in [7]. It may easily be checked that they have the property
that if a triple I',I',I'; has non-zero fix-vectors, then the matrices

T®MLEM(C%,,) and T,®T,E(CY)

are all real (use the fact, [2], Sect. 2.1, that such triples always contain an even
number of spin irreps). From this we may conclude that these matrix forms of
the irreps allow real 3-1" symbols to be chosen ([2], Sect. 3.2). Indeed, it may be
seen that changing the basis functions of (ii) by the prescription

IT Yy = T ) (2.7)

where a = exp (iw/4), gives basis functions generating the (iii)-matrix irreps and
simultaneously generating real 3-I' symbols for all triples. In fact, the 3-I" symbols
generated, when following our procedure, from the basis functions defined by
(2.7) satisfy the relation

(Fl T, F3> =a(27,+272+273)(rl I, I‘3>
Y1 Y2 Y3/ i) Y Y2 Y3/ G

=i(71+72+73)<rl I, F3) , (2.8)
Y Y2 Y3 /i

where the phase factor in the latter expression is seen from (2.6) to be always 1
or —1. Eq. (2.6) is of course, then, also satisfied by the variant 3-I" symbols. In
view of (2.8) it is never necessary to tabulate or even calculate the variant 3-T'
symbols separately.

One may now, using any desired choice of basis functions for D¥ among the
above ones, generate any desired portion of the infinitely many 3-I" symbols for
D¥. We shall not tabulate such 3-I' symbols separately, but some of them appear
below as 3-T' symbols for some of the subgroups D¥ of DX.

[Kibler and Grenet [8] have given explicit formulas, in terms of 3-j symbols for
SU(2), for all general types of f coefficients (a choice of coefficients closely related
to coupling coefficients) corresponding to a particular choice of (SU(2)>
D¥)-adapted basis functions. Their standard irreducible matrix representations
of DX are a mixture of our choices (i) and (ii) with some additional sign changes.]

3. The groups D}, n=2,3,4,5,...

For each integer n =2 we shall define here D¥ as the subgroup of D¥ (and thus
of R¥) generated by C5 and CZ".

Table 4 gives the rep-theoretical information on the groups D?¥ needed in the
following. What we shall have to discuss here is the assignment of j-values and
basis functions to the irreps of D¥, cf. ([2], Sect. 4.4).
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All primary j-values are simply as low as possible, in accordance with rule (1) in
([2], Sect. 4). The interesting thing to note is the assignment of secondary j-values
to all irreps E, ( D) of the first kind. However, a general discussion of the necessity
of two sets of basis functions for these irreps and the reason for choosing the
particular j-values given in Table 4 will be deferred to Sect. 4. This is done for
the sake of clarity, and a reader who wishes to do so may read Sect. 4 before
proceeding in the present section.

Basis functions for D7 with the j-values thus selected are chosen according to
three different schemes, corresponding to the three choices of standard matrix
irreps and basis functions for D in Sect. 2. Prescriptions for this are given in
each part of Table 2; the following general features may be noted:

The standard form of the irreps E,(D%), 1/2=<X <n/2, is in each case simply
the matrix irrep obtained by restricting E, (D%) to D¥ and the basis functions
may thus be taken over directly as those for E, (D).

The one-dimensional irreps B,, B, and R, R, are given in Table 2; in D%,
A,, A,, B, and B, are called A, B,, B;, and B,, respectively. Basis functions are
always made out of the E, ,(D%) set, with free phases fixed according to the
principles given in ([2], Sect. 4.4). The easiest cases to consider here are (ii) and
(iii), where E,,»(D%) has a matrix form which directly blocks out as B;® B,
resp. R;®R,, upon restriction to DF.

A problem only arises for the (first-kind) irreps E, (D7) with A integer which, as
mentioned, have to be assigned secondary bases. Given n and A and a particular
choice among (i)-(iii), the irrep E,_,(D%) will yield, on restriction to D%, an
irrep equivalent to E,(D%), but generally with a different matrix form than the
one fixed as the standard above. Interchanging the D¥ basis functions for E,_,
and / or changing the sign of one of the functions gives, however, in each case
the correct matrix form.

Summing up, case (i) involves matrix irreps of D} adapted to C¥ (the subgroup
generated by CZ"), while those of cases (ii) and (iii) are (D} > C¥)-adapted.
Note that the irrep component designations are chosen accordingly. The mutually
complex conjugate third-kind irreps R;(D?¥) and Ry(D¥), n odd, have the non-
numerical component designation “r”’; the reason for using such a symbol was
given in ([2], Sect. 3.4). For the purpose of checking with the selection rules (3.1)
and (3.2) below, the component translations R,r=n/2, R,r=—n/2 in case (i)
and R;r=1/2, R,r =—1/2 in cases (ii) and (iii) may be used. The basis functions
prescribed in Table 2 for the groups D7 generate real 3-I" symbols.

It may furthermore be checked that for D¥, n even, Eq. (4.4.1) of [2] is satisfied
so that the formalism of ([1], Sect. 5.5) applies.

The 3-T symbols of choice (i) satisfy, because of the adaption to C¥, the “‘selection
rule”

(rl r, T,

>7é0:>'y1+72+'y350(m0dn) (3.1)
Yv Y2 V3
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([2], Sect. 3.5). Those of choices (ii) and (iii) satisfy the rule

<T1 I, T;
Y Y2 Vs

Note. Consider the groups D7 with n odd. For all of the choices (i)-(iii), the
matrix representing C5 in the irreps E, is imaginary when A is equal to half
an odd integer. This is of course unavoidable when one insists that it be diagonal,
since its eigenvalues are i and —i. However, in the C7-adaptation situation, the
irreps E, may for all A be chosen in a matrix form with C5X~ represented by the
matrix

0 (_1)2A
(1 ' ) (3.3)

>7£0:>71+72+7350(m0d2)- (3.2)

and CZ by the same diagonal matrix as in Table 2(i). On the other hand it is
easily seen that in such a situation not all 3-T' symbols can be real. (The idea is
to demonstrate that certain standard matrix irrep triples I',I",I'; will have a purely
imaginary matrix for I'(CX)®,(CX)®T(CS") and to realize that an
imaginary matrix cannot have a real fix-vector). If one is, nevertheless, interested
in this variant form of the irreps, one need not tabulate separate basis functions
or 3-I' symbols. The relation

,r7>variant = a_2y|F7>(i)s (34)

where « is exp (im/4), provides basis functions generating them, and the generated
3-" symbols differ from the ones known in case (i) just by the phase factor
i~*72*%) This phase factor is always one of the numbers 1, —1, i, and —i so
that the variant 3-T' symbols are either real or purely imaginary. (The whole
discussion in this note may be compared with the one surrounding Egs. (2.7) and
(2.8) above.)

4. Secondary bases for the irreps E, of D¥, n=3,4,5,...

Suppose n =3 is given and E, is one of the first-kind two-dimensional (and thus
vector-type ([2], Sect. 2.1)) irreps of D¥. Then A is an integer with 0 <A <n/2,
and therefore (n—A\)/2 is either an integer or half an odd integer and satisfies
n/4<(n—AX)/2<n/2. There is thus a two-dimensional irrep E,_,),» of D}, and
consideration of Table 4 shows that the tensor product E(,_,,/2®E,_,),> contains
E,—2m-r)/2 = E, and thus (see, for example, the reasoning in [1], Sect. A.1) that
E(s-ry2E(a—r)2Ex has non-zero fix-vectors. However, using the primary bases for
E(n.-ry/2 and E, gives only zero triple coefficients for E¢,_,)/2E(.-»)/2Ea. This fact
is easily appreciated if one recalls that these bases are also bases for the DX-irreps
with the same designations and that (Table 3) in DX, triple coefficients for
E(n-1)/2E(n-1)2E, are necessarily zero (because A # 2(n —A)/2 under our present
assumptions). The procedure of ([2], Sect. 4.4) then tells us to assign a secondary
basis to one of the irreps in the triple E,_,)/2En-1)/2Ex. Now, if A =(n—2)/2,
i.e. if A =n/3, then all three irreps are identical, and we conclude that E, must
be assigned a secondary basis. If (n—A)/2# A, rule (9) in ([2], Sect. 4.4) concern-
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ing triples containing two and only two identical irreps also says that E, is the
one to be assigned a secondary basis. Thus, in any case E, has to be assigned a
secondary basis, and since A and n=3 were chosen arbitrarily, we have seen
that we shall always have to assign E,(DF) a secondary as well as a primary basis.
The above reference to DX suggests the secondary j-value j=n—A for E,, and
since this is also the next-to-lowest j-value assignable to E, (D?¥), it is in accord-
ance with the prescriptions of [2] to choose a secondary E,(D¥)-basis with
Jj=n—A. So this is what we have done, as already described above. It turns out
that with our assignments of basis functions we can generate all 3-I' symbols for
the groups D¥, D¥, D¥, D¥, D¢, D¥, D¥, and D%}, which we believe to be at
present the only D%-groups of direct interest in chemistry, and which are the
only ones for which we have carried through the actual calculation of 3-I" symbols.
(The reason for the inclusion of D¥, DY, and D% is that, by the definitions in
([2], Sect. 2.2), these groups are the double groups of D,,; Ds, and Dy,
respectively).

The question now arising of when to use primary and when to use secondary
bases for the E,(D%) requires some commenting and we shall supply such a
discussion by going through some selected examples. For those D} -groups which
we have investigated, secondary bases are only needed in connection with irrep
triples of the form E, E, E, . We shall distinguish the following situations:

1° All three A's different, A, # A, # A3 # A,;: For some of these cases, no secondary
bases are needed. An example of this is E,E,E; in D¥. Consider however, e.g.
E;E.Es in D%. Since none of the numbers 3, 4, and 5 is the sum or difference
of the remaining two, consideration of D¥-irrep triples (Table 3) shows that
using the primary bases for all three irreps just gives zero triple coefficients.
However, if any one of the three is assigned its secondary basis and the remaining
two their primary bases, non-zero triple coefficients are generated. (Cf. the fact that

Eo(D%) - Es(DY,
Eg(D%) > E(D%, (4.1)
E7(D;ko) -> Es(Dikz

and that each of the DX-triples E;E,Es, E;EgEs and E;E,E, has non-zero fix-
vectors.) Rule (10) in ([2], Sect. 4.4) then tells us, of the three possibilities, to use
for Es its secondary basis (since 3 +4+7 <3 +8 +5<9+4+5). Evidently the rule
is always decisive when three different A’s are involved.

2° Two equal A’s and the third one different, say A, = \; # A,: Again, sometimes
the primary bases are sufficient. An example is E,E,E; in D¥. When A +A;# A,
however, a secondary basis is needed and by the discussion above it is E,, which
is to be assigned its secondary basis. For example, E;,,E,E;,, in D¥ is associated
with the j-triple 3/2 3 3/2 and E,E,E, in DY is associated with the j-triple 484.

3° All three A’s equal, A, = A,= Ay = A: This situation by Table 4 only occurs for
A=n/3 (in groups D} where n is a multiple of 3). A triple of this type has, as
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we know, always multiplicity 1 and is thus simple phase ([1], Sect. 3.2); since E,
occurs in E, ®, E, (Table 4), its fix-vectors are necessarily fully symmetric ([1],
Sect. 3.2 and Sect. A.1) so that 3-I' symbols for E,E,E, are even. Since the
D¥-irrep triple E, E,E, has only zero triple coefficients, we have to assign the
secondary basis with j=n—A =2A to E, in one of the three positions. The only
problem is whether the position of the secondary basis is of consequence for the
resulting 3-I" symbols for E,E, E,. This turns out not to be the case, that is, the
transformed 3-j symbols involved satisfy the relations:

(ZA A /\)_()\ 2A /\)_.< A A 2)\) (4.2)
Exvi Eiys Euvs E,vi E,v. Eiys E,vi Exyv. Eyv ’ ’

Let us prove just the first equality: since 2A +A +A =4\ which is an even number,
the 3-j symbols are even ([1], Sect. 6) so that

(2/\ A A)_(A 2A A)_ 43)
Exvi Exv: Euvs E,y2 Exvi Exys ’ ’

and since any E, (D¥)E,(D})E, (D) fix-vector as stated above is symmetric, we
further have

( A20 )_( Ao2a ) (44
E,v2 Exvi Eavs Exvi Exv2 Eavs ’ )

as desired. Compare with the discussion of the triple TTT in [9].

Notes. (1) The prescriptions given above for primary and secondary basis func-
tions for irreps of D?¥ are of course applicable for all n; however, for a group
D* not among the ones we have checked, we — in principle - do not know
whether non-zero triple coefficients may be generated for all triples by using these
basis functions. All we can say is that no “D¥ — selection rule” tells anything
about the possible vanishing of the generated triple coefficients. Possibly a general
investigation of this question is not complicated, but we have not at the moment
pursued the subject any further.

(2) It should be noted that the assignment of basis functions to the irreps E,
with A integer in the present paper differs in several respects from that made in
[7] in connection with the groups D,: In the first place, our present procedure
tells us to always assign j = A as the primary j-value, whereas j=A +1 was used
for A odd in[7]. Secondly, we here use different j-values for primary and secondary
bases, whereas in [7], as an example, E, of D; was assigned a primary as well
as a secondary basis with j=2. Thus, even in the cases where we here choose
the same standard matrix irreps for a given D} as we did in [7] (choice (iii), see
Sect. 2), phase differences are to be expected between the present 3-I' symbols
and those of [7].

(3) The only previous attempt at a general treatment of 3-I' symbols for dihedral
double groups using basis functions is [10]. However, no explicit discussion is
given of the necessity of secondary sets of basis functions and of the use of such
sets. Also, it is easy to show that with the standard matrix irreps used by those
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authors, some 3-I" symbols for D¥ with n odd must come out to be non-real.
(Cf. note in Sect. 3 above.)

5. Examples: 3-I' symbols for D% > C% and for D% > C%

The tables of 3-I' symbols for the D¥ groups which we have generated on the
basis of the above discussion are too numerous and voluminous to be all included
in the present paper. However, a couple of examples will convey most of the
general features. We have chosen to display in Table 5 the 3-" symbols for
D¥> C¥ (choice (i) above) and D¥ > C¥ (choice (ii)); as far as we know, this is
the first presentation of all-real sets of 3-I' symbols for D¥.

We note the following features which illustrate general points made in [1] and
[2] or above:

(a) We see that for D¥ > C¥, there are generally more allowed component triples
(see the irrep triples E;AE, and E, ,E E,,) than for D¥ > C¥, cf. the selection
rule (3.2) which is weaker than (3.1).

Table 5

3-T symbols for D¥ generated by the basis functions of Table 2

(i) D¥>C%
(A1 A, Al>=1_ (A2 A A, L R, A, R, 1
0 0 0 ’ 0 0 0 ’ r 0 r ’
even even odd; A=-1
El Al El) \/‘— (EI/Z Al El/Z)
=v1/2; =—v1/2;
(1 0 -1 / /2 0 -1/2 /
even odd
(5% B (52 % Be) i
1 0 -1 2 0 -1/2
odd even
(R1 A, Rl)zl_ (R2 A, R, L
r 0 r ’ r 0 r ’
even even
Ei,, E, E|/2|3-F E; Eip R,' 3-T E, Eipp RZ‘ 3r
1/2 -1 1/2 '—«/1 2 1 /2 r (+V1/2 i 1/2 r {—V1/2
-1/2 1 -1/2 |=V1/2 -1 -1/2 r |=J/1/2 -1 -1/2 r |-J1/2
even odd; A=-1 odd; A=+1

E. By By 3T
1 1 1 l—\/TE
-1 -1 -1 1/2

even; A= -1
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Table 5.—cont.

3-T' symbols for D generated by the basis functions of Table 2

(A\ A, A‘)—1- (Az A, A2>_ L (R‘ A R2>_+1,
0 0 0 ’ o o o/ ro0 r)

(ii) D¥>C¥

even even odd; A=-1
E, A El) (El A, El) Jia (E1/2 A, El,z)
= =—v1/2; =\/1_2-;
(0 0 0 1 0 1 / /2 0 -1/2 /
even odd
(E1 A, E1)=~/1/—2; (Rl A, Rl>=l; <R2 A, R2)=_1;
0 1 1 ro 1 r ro 1 r
odd even even
_(Ex/z Ay En/z)=< Eiz A El/z) =~/1_/5;
/2 1 1/2 -1/2 1 -1/2
even
E,,, E EWJ 3.r E, E lﬁl 3r E, E R2l 3.T
/2 0 -1/2 1/2 0 -1/2 r{—v1/2 0 1/2 r |=V1/2
172 1 172 |-1/2 1 12 r|-172 1 -1/2 r |V172
-1/2 1 -1/2 |-1/2
even odd; A=~1 odd; A= +1

E, E, E |3T
0 0 0 ]1/2
0 1 1|12

even; A=—1

(b) We note that (A;A,A,/000) = +1 in both cases and recall that consequences
of this relation were mentioned in ([2], Sect. 4.4).

(c) We have given the one by one Derome~Sharp A matrix ([1], Sect. 5.4) for
some of the triples as a number A. We note that for R, AR, we have an illustration
of (4.4.7) of [2] and for E,E,,,R,; an illustration of (A.5.7) of [1]; in these cases,
a negative A must occur within our set of conventions. This is true even for
E,E,E,, a triple of first-kind irreps. If we keep the present matrix irreps, the only
way to obtain A= +1 for E,EE, would be to multiply the basis functions by a
non-real complex phase. The A matrices may in all cases be calculated from the

3-T' symbols given in the table. For example, for D¥ > C¥ we have, giving all
details,

(El E1/2 I-il) = <E1 E1/2 RZ) — _(El EI/Z RZ)
0 -1/2 r 0 —-1/2 r 0 —-1/2 r

=_(E1 E,)» RZ)_____(EI Ei/» Rl) (5.1)
0 1/2 r 0 -1/2 r ’
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from which it is seen that A= —1 for E,E,/;R,. In the calculation (5.1) we used,
twice, the conjugation formulae developed in ([1], Sect. 5.3).

(d) To illustrate further our formalism, we demonstrate the construction of
coupling coefficients according to ([1], Sect. 5.3): for D¥ > C5 we get

<E|1E1/21/2|R27>

E, El/z Rz)
1 1/2 r
E, Ey Rz)

1 1/2 r

= W(E]E]/2R2)7T(E1A1E1) Sign (R2A1R2)\/dlm Rz(

= W(ElEl/le)’ﬂ'(ElAlEl) sign (RIAIRZ)(

E, E Rz)
1 1/2 r

_ E; E, R)\_ _nfE Eiz R\ _ )

- (1 1/2 r>_ (X 1)<1 ~1/2 r) /2 52)

here we used ([1], Egs. (5.3.15) and (5.3.14)); ([1], Eq. (5.3.13)); Table 5 of this
paper in connection with ([1], Eq. (5.3.5)); and Table 5 once more.

=(—1)(+1)(+1)(

[See again note (3) in Sect. 4. In addition, [11] gives a set of what is called symmetry
coupling coefficients for D¥, generated by specified basis functions. Some of the
coeflicients are non-real. It is claimed that 3-I' symbols cannot be constructed.
A secondary basis is provided for E,(D¥), but no closer discussion of the use of
it is given.]

6. Further material available

If there is a subgroup D% of D with m <n, then one may choose standard
matrix irreps of D¥ which upon restriction to D7, yield the irreps of that group
in the standard D% > C¥ or D¥ o C¥ form discussed above. These matrix irreps
of D¥ will generally not be identical to any of those met with in cases (i)—(iii),
but will be closely related to them. We have prepared basis functions and 3-T
symbols for the following hierarchies of this kind:

Di>D}>C} (i), Dj>D3i>C% (i)
D¥>D¥>C¥
D¢> D3> C%
Di>D}f>C% (i), D¢>D3>CH (i)

(6.1)

All of these symmetry hierarchies may rather obviously be of practical relevance,
but the two D§ > D¥ hierarchies are of interest from a fundamental point of
view as well. It has recently been proved [12] that the existence of real coupling
coefficients for a certain set of matrix irreps of a given group — or, equivalently
(use arguments given in Appendix A of [13]) real 3-T' symbols — implies that there
is a (unique) automorphism of the group (homomorphic one-to-one mapping of
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the group onto itself) carrying all the matrix irreps into their complex conjugates.
For all the basis function sets represented by (6.1), the automorphism just
mentioned is the inner automorphism R - C5 R(C5")™". (In fact, in this material,
Eq. (4.4.1) of [2] is always satisfied with R,= C5 " and the formalism of ([1], Sect.
5.5) applies). For D¥ which possess irreps of the third kind, an irrep-conjugating
automorphism must be outer (and so the above one is). The situation we are
describing with D¥ < D¥ is analogous to the one encountered with the tetrahedral
double group [9] and the imbedding of it in the octahedral double group in [14].

7. Further remarks on the literature

Information equivalent to sets of 3~I" symbols for various dihedral double-group
hierarchies may be extracted from the tables in [15]. The method used in [15] is
radically different from the one described here (cf. our remarks in {2]) and in
particular does not involve basis functions. Information on matrix irreps and
basis functions is difficult to extract from [15] and [16]. The paper [17] deals with
D,, > D,> C,(or rather their double groups; cf. [2], Sect. 2.2) by Butler’s method.
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